More Power Than Ever! 20 t

NK-200E-v

Tough New Boom Reduces Vertical Deflection and Lateral Bending During Lifting Operations

KATO'S revolutionary Compuload microcomputer control system monitors the crane's operational status at all times, keeping the operator constantly informed of what is going on through instant numerical readouts in an easy to read digital display.

Advanced Microcomputer Control System

Voice alarm is available as an option

AUTOMATIC SEVEN-POINT DETECTION

The advanced ACS Moment Limiter is a fully automatic overload prevention device incorporating calculation functions based on the latest electronic know-how. It provides precise output on up to seven safety factors: safety level (total moment), boom angle, working radius, boom length, critical load, actual load, and maximum hook lift. These factors are displayed on a graphic display panel. This arrangement permits easy readout without eye fatigue and facilitates a constant and accurate appraisal of changes in the safety factors, thereby enhancing the safety of crane operation.

CONSTANT FIVE-POINT DISPLAY OF OPERATING CONDITION

- In-panel indicators have been replaced by digital displays that show safety level, boom angle, boom length, working radius and critical load at all times, without any troublesome button operations. For further the display of safety level is colorzoned to enable the operator to take in the condition of the load at a glance.
- Protection against breakdowns and malfunctions . . . For double protection in the unlikely event of a malfunction in the ACS Moment Limiter or any other problems, a trouble indicator has been provided to generate an emergency signal in the appropriate display to warn the operator.

3-Stage Jib Offset Extra long reach ideal for close-in, high-lift work

Extra long boom boosts high and remote Ift capabilities
- Boom length
10.5-26.2m
- Jib length
- Jlb offset
$7.5 m$ (7.5m $-12 m$: option)
(3-stage:
$\left.5^{\circ}, 17^{\circ}, 30^{\circ}\right)$

FULL POWER BOOM

- The tough new Fullpower boom utilizes a sequential, synchronized extension/ retraction control system that permits single-lever control and speeds up operations at all boom lengths from low lifts at 10.5 m (fully retracted) to high lifts at 26.2 m (fully extended).
- For greater ease of use, operability and safety, the new boom is of a robust construction that reduces vertical deflection and lateral bending during operations.

FANTASTIC OPERATING RANGE! IDEAL FOR CLOSE-IN OPERATIONS THANKS TO 3-STAGE JIB OFFSET $\left(5^{\circ}, 17^{\circ}, 30^{\circ}\right)$

- In addition to the conventional offset angles of 5° and 30°, the jib on the NK-200E-v can also operate at an extra offset angle of 17°. Selection of the 3 offset angles is simple and the feature is a real boon in close-in work during the construction of high-rise buildings or when performing high-lift operations in restricted spaces.

GREATER EFFICIENCY IN SINGLE-ROPE LIFTING OPERATIONS-CONVENIENT ROOSTER SHEAVE

- This feature greatly enhances operating speed when handling lightweight loads. The rooster sheave is easy to mount at the head of the boom, and the hoisting and lowering of single hook load can be carried out with greater ease and efficiency.

Advanced Electronics Enhance Reliability

Independent Winches with Automatic Brakes for Greater Power, Speed and Operational Efficiency

FOR TOTAL PEACE OF MIND... CAREFULLY DESIGNED

SAFETY DEVICES

- Safety was a prime consideration during the design of the NK-200E-v, which is equipped with numerous safety devices, including the ACS Moment Limiter, an overhoisting prevention device, a slewing lock device, a boom derricking safety device, automatic brakes, an outrigger locking mechanism and hydraulic relief valves. All cylinders mounted in the boom, outriggers and so on are fitted with specially designed safety valves.

CONVENIENT SLEWING SYSTEM WITH FREELOCK SWITCHING

- The slewing system can be locked for operations involving delicate slewing during high or heavy lifting or left free for simple back-and-forth work. The result is safe, efficient operation in a wide range of applications.

JUST THE JOB FOR COMPOUND OPERATIONS!

- The NK-200E-v features 2 independ-ently-driven winches equipped with powerful automatic brakes. This feature is particularly useful in compound operations because the main and auxiliary winches are controlled by separate levers that permit them to perform hoisting and lowering operations independently yet at the same time. The result is faster operations and greater efficiency.
- The automatic brake prevents accidents resulting from incorrect operation, while the elimination of tiring pedal operations for the main and auxiliary winches represents a big reduction in operator workload.
2-stage winch speed control
- For greater operational versatility, combined dual hydraulic circuits permit 2-stage speed control of the main and auxiliary winches by means of independent levers, enabling the operator to vary the speed of the two winches between high and low without any loss of hoisting power.

TRIPLE SAFETY BACKUP GUARANTEES SURER

BRAKING FOR

GREATER SAFETY

- The winch mechanism is equipped with three separate safety features: an automatic brake, a counterbalancing valve and a drum lock. These are designed to eliminate the danger arising from operating error and assure safer, more positive operation.
Tried and tested irregular winding prevention device
- The drum is grooved and equipped with a device to prevent irregularities in rope feeding. This not only keeps the rope winding smoothly but also prolongs rope life.
Non-rotating rope eliminates hook torsion
- The use of non-rotating rope prevents tangling during operations and damage to the rope caused by twisting of the hook, resulting in smoother, safer operations.

KATO NK-200E-v

FULLY HYDRAULIG TRUGK GRANE

SPECIFICATION

KATO WORKS CO.,LTD.

6.2 m Boom +7.5 m Jib
(Offset 5°)

BS 1757: 1986

Outriggers fully extended with front jack $\quad-360^{\circ}$ full rangeOutriggers fully extended without front jack - over side and over rear				Outriggers intermediately extended without front jack - 360° full range Outriggers fully extended without front jack - over front			
Working radius (m)	$\begin{gathered} 10.5 \mathrm{~m} \\ \text { Boom } \end{gathered}$	$\begin{aligned} & 18.3 \mathrm{~m} \\ & \text { Boom } \end{aligned}$	$\begin{gathered} 26.2 \mathrm{~m} \\ \text { Boom } \end{gathered}$	Working radius (m)	$\begin{aligned} & 10.5 \mathrm{~m} \\ & \text { Boom } \end{aligned}$	$\begin{gathered} 18.3 \mathrm{~m} \\ \text { Boom } \end{gathered}$	$\begin{gathered} 26.2 \mathrm{~m} \\ \text { Boom } \end{gathered}$
2.5	20.00			2.5	20.00		
3.0	20.00			3.0	20.00		
3.5	17.50	12.00		3.5	17.50	12.00	
4.0	15.50	12.00		4.0	15.20	12.00	
4.5	13.90	12.00		4.5	11.65	12.00	
5.0	12.50	12.00	7.00	5.0	9.70	10.20	7.00
5.5	10.70	10.50	7.00	5.5	8.00	8.60	7.00
6.0	9.50	9.50	7.00	6.0	6.80	7.35	7.00
6.5	8.50	8.60	7.00	6.2	6.50	7.00	7.00
7.0	7.70	7.90	7.00	7.0	5.25	5.50	5.70
7.5	6.95	7.25	6.50	7.5	4.55	4.80	5.00
8.0	6.25	6.75	6.05	8.0	3.90	4.25	4.40
8.5	5.60	6.25	5.60	8.5	3.35	3.75	3.90
9.0		5.75	5.30	9.0		3.35	3.45
9.5		5.35	5.00	10.0		2.65	2.80
10.0		4.90	4.75	11.0		2.15	2.25
11.0		4.15	4.10	12.0		1.75	1.85
12.0		3.55	3.50	13.0		1.40	1.50
13.0		3.10	3.00	14.0		1.10	1.20
14.0		2.70	2.60	15.0		0.90	0.95
15.0		2.30	2.25	16.0		0.70	0.75
16.0		2.00	2.00	17.0			0.60
16.5		1.85	1.80				
17.0			1.75				
18.0			1.55				
19.0			1.35			,	
20.0			1.20				
21.0			1.05				
22.0			0.90				
23.0			0.80				
24.0			0.70				
24.5			0.65				
Standard hook	for 20 ton			Standard hook	for 20 ton		
Hook weight	230 kg			Hook weight	230 kg		
Parts line	7	4		Parts line	7	4	
Critical boom angle	-	-	-	Critical boom angle	-	-	40°
(Unit: Metric ton)				(Unit: Metric ton)			

NOTES:

(1) The rated lifting capacities are the maximum load guaranteed on a firm level ground and include the weight of hook block and other lifting equipment. The capacities enclosed with bold lines are based on the structural strength of machine and the otehrs are based on the stability of machine.
(2) The working radii as given in the table are the actual values including the deflection of the boom. Therefore, operate the machine based on the working radius. However, the working radii shown for jib operations are based on the velues obtained when the boom is fully extended (26.2 m). Jib operations should be performed on the basis of boom angle only, regardless of boom length when the boom is not fully extended.
(3) The rated lifting capacities for the rooster sheave are equivalent to the rated lifting capacities for the main boom to a maximum of 3000 kg . At all times the weight of all lifting equipment in use (including main hook block suspended from boom head) forms part of load and must be subracted from the rated lifting capacity.
(4) If the boom length exceeds the specified value, the rated lifting capacities for the boom length above and below the present boom length should be referred to, and the crane should be operated within the smaller lifting capacity.
(5) When using the main boom with the jib installed, 550 kg plus the weight of hook block and other lifting equipment, etc., should be subtracted from the rated lifting capacities. When performing the above operation, do not use the rooster sheave.
(6) The standard number of parts of line is shown in the rated lifting capacity table.
When the standard number of parts of line is not used, the minimum number of parts of line is determined so that weight per part will not exceed 3000 kg .
(7) Without front jack, over front lifting performance is inferior to over side and over rear lifting performance. Great care should be taken when transferring from over side to over front since there is a danger of overloading.

WORKING RANGE

Outriggers fully extended with front jack - 360° full range Outriggers fully extended without front jack - over side and over rear						
Boom angle $\left({ }^{\circ}\right)$	26.2 m Boom + 7.5 m Jib					
	Offset 5°		Offset 17°		Offset 30°	
	Working radius (m)	Load (t)	Working radius (m)	Load (t)	Working radius (m)	Load (t)
80.0	6.6	2.50	8.0	1.75	9.4	1.30
73.0	10.2	2.50	11.4	1.75	12.7	1.30
72.5	10.5	2.45	11.7	1.75	12.9	1.29
70.0	11.9	2.25	13.0	1.67	14.1	1.25
65.0	14.6	1.96	15.7	1.51	16.7	1.17
60.0	17.2	1.75	18.2	1.38	19.0	1.12
55.0	19.6	1.59	20.6	1.29	21.2	1.08
53.6	20.3	1.55	21.3	1.26	21.9	1.07
49.3	22.1	1.25	23.0	1.20	23.6	1.04
46.9	23.1	1.11	23.8	1.08	24.6	1.03
40.0	25.5	0.82	26.2	0.79	26.7	0.78
35.0	27.3	0.65	27.7	0.64	28.0	0.64
30.0	28.7	0.53	29.1	0.52	29.2	0.52
Standard hook	for 3 ton					
Hook weight	60 kg					
Parts line	1					
Critical boom angle	-					

(Unit: Metric ton)

Outriggers intermediately extended without front jack -360° full range Outriggers fully extended without front jack - over front						
Boom angle$\left({ }^{\circ}\right)$	26.2 m Boom +7.5 m Jib					
	Offset 5°		Offset 17°		Offset $30{ }^{\circ}$	
	Working radius (m)	Load (t)	Working radius (m)	Load (t)	Working radius (m)	Load (t)
80.0	6.6	2.50	8.0	1.75	9.4	1.30
73.0	10.2	2.50	11.4	1.75	12.7	1.30
72.5	10.5	2.45	11.7	1.75	12.9	1.29
70.0	11.9	2.26	13.0	1.67	14.1	1.25
67.3	13.2	1.77	14.5	1.58	15.5	1.21
65.2	14.3	1.46	15.5	1.31	16.7	1.18
60.0	16.9	0.90	18.0	0.82	18.9	0.78
54.5	19.4	0.52	20.4	0.48	21.3	0.46
Standard hook	for 3 ton					
Hook weight	60 kg					
Parts line	1					
Critical boom angle	50°					4

(8) Critical boom angles for each boom length are shown on bottommost line of lifting capacity table.
If the boom angle is lowered to less than the critical boom angle, the machine will tip over without load. Therefore, never lower the boom below these angles.
(9) Free fall is adopted in principle to lower the hook only. If it is necessary to lower a load by free fall, its weight should be less than 20% of the rated lifting capacity and abrupt braking should not be allowed.
(10) The machine will tip over or be damaged if operated with a load exceeding that specified in the rated lifting capacity table or not conforming to correct handling.
If such trouble occurs, the machine will not be warranted.

SUPERSTRUCTURE SPECIFICATION

Name and Type:	KATO NK-200E-v FULLY HYDRAULIC TRUCK CRANE	
Performance		
Crane capacity: $20.0 \mathrm{t} \times 3.0 \mathrm{~m}, 10.5 \mathrm{~m} \mathrm{~B}$		
$12.0 \mathrm{t} \times 5.0 \mathrm{~m}, 18.8 \mathrm{~m}$ Boom with outriggers		
$7.0 \mathrm{t} \times 7.0 \mathrm{~m}, 26.2 \mathrm{~m}$ Boom with outriggers		
$3.2 \mathrm{t} \times 12.5 \mathrm{~m}, 10.5-26.2 \mathrm{~m}$ Boom Rooster sheave with outriggers		
$2.5 \mathrm{t} \times 10.2 \mathrm{~m}, 26.2 \mathrm{~m}$ Boom +7.5 m jib (Offset 5°)		
$1.75 \mathrm{t} \times 11.7 \mathrm{~m}, 26.2 \mathrm{~m}$ Boom +7.5 m jib ((Offset ${ }^{17^{\circ} \text {) }}$ with outriggers		
$1.3 \mathrm{t} \times 12.7 \mathrm{~m}, 26.2 \mathrm{~m}$ Boom +7.5 m jib (Offset 30°)		
Boom length: Basic 10.5 m		
Boom longr.	Maximum	26.2 m
Jib length: 7.5 m		
$\begin{array}{ll}\text { Max. lifting height: } & \\ & \\ & 36.0 \mathrm{~m} \\ & \text { (Boom } \\ & \\ & \end{array}$		
		(26.2 m Boom +7.5 m Jib Offset 5°)
Main hoisting line speed: $\quad 110 \mathrm{~m} / \mathrm{min}$ (4th layer)		$110 \mathrm{~m} / \mathrm{min}$ (4th layer)
Auxiliary hoisting line speed: $95 \mathrm{~m} / \mathrm{min}$ (2nd layer)		
Main hook hoisting speed: $15.7 \mathrm{~m} / \mathrm{min}$ (4th layer of wire rope)		
Auxiliary hook hoisting speed: $95 \mathrm{~m} / \mathrm{min}$ (2nd layer of wire rope)		
Boom derricking time: $\quad 44 \mathrm{sec}\left(-3^{\circ} \sim 80^{\circ}\right)$ (1-part		
Slewing speed: $\quad 2.6$ r.p.m.		

Hydraulic System
Oil pump: $\quad 4$ section gear type
Hoisting motor:
Slewing motor:
Cylinder:
Control vale:
Oil reservoir capacity:

4 section gear type
Axial plunger type
Axial plunger type
Double acting type
3 position 4 way double acting with integral check and relief valves

Superstructure

Hoisting mechanism:
Slewing mechanism:
Boom derricking
mechanism:
Outrigger system:
Front jack (option):

Hoisting Ropes
 Main:

Auxiliary:
Hydraulic motor-driven, gear reduction type (automatic brake system) single winch $\times 2$ Ball bearing type

Direct-acting cylinder type
Hydraulic, vertically supporting with float and vertical cylinder in single unit
Hydraulic, vertically supporting with float and vertical cylinder in single unit
$4 \times \mathrm{F}(\mathrm{a}+40) \phi 16 \times 170 \mathrm{~m}$
Non-rotating wire rope

Safety Device

Microcomputer type ACS fully automatic overioad protection device (Moment Limiter)
Boom falling safety device, Overhoist prevention device, Drum lock device, Automatic winch brake, Irregular winding prevention device, Hydraulic safety valve, Outrigger lock device, Slewing lock device
Option \quad Oil cooler, Front jack, Voice alarm device for ACS,
Heater, fan and radio for crane cabin
2 section fly jib ($7.5 \sim 12 \mathrm{~m}$)

Carrier name and model	A	B	C	D	E	F	G	H	1	J	K
Mitsubishi K203BLA	12,430	3,300	4,050	1,300	2,400	2,200	2,500	3,800	5,600	3,220	2,300
Nissan Diesel KW31MXL	12,430	3,300	4,050	1,300	2,450	2,100	2,500	3,800	5,600	3,220	2,200

Mitsubishi K203BLA

Nissan Diesel KW31MXL

CARRIER SPECIFICATION

MITSUBISHI K203BLA
Maximum traveling speed:
Gradeability $(\tan \theta)$:
$65 \mathrm{~km} / \mathrm{h}$
31% (computed, @G.V.W. $=$ $22,200 \mathrm{~kg}$)
Minimum turning radius
(center of extreme outer tire): 9.5 m
General dimensions

Overall length:	approx. 12,430mm
Overall width:	approx. $2,500 \mathrm{~mm}$
Overall height:	approx. $3,300 \mathrm{~mm}$
Wheel base:	4,700mm
Treads: Front	2,050mm
Rear	1,845mm
Center to center of extended outriggers:	$5,600 \mathrm{~mm}$ (Fully extended)
	$3,800 \mathrm{~mm}$ (Intermediately extended)
Gross vehicle weight:	approx. $22,200 \mathrm{~kg}$
Front	approx. $5,550 \mathrm{~kg}$
Rear	approx. $16,650 \mathrm{~kg}$
Carrier	
Maker:	MITSUBISHI
Model:	K203BLA
Drive system:	6×4
Engine	
Maker:	MITSUBISHI
Model:	6D22-1A
Type:	4 cycle, water cooled, diesel
No. of cylinder:	6 -inline
Piston displacement:	11,149cc
Max. output horsepower:	225 PS/2,200 r.p.m.
	$165 \mathrm{KW} / 2,200$ r.p.m.
Max. output torque:	$78 \mathrm{~kg} \cdot \mathrm{~m} / 1,400$ r.p.m. $764 \mathrm{~N} \cdot \mathrm{~m} / 1,400$ r.p.m.

NOTE: The output is in accordance with JIS D1004, 1976. Rated power output guaranteed within 5% at standard ambient condition.

Clutch:
Transmission:

Axles:	Front Rear			
Steering:	Suspension:	Front		
:---	:---			
Brake:	Rear Service			

Parking \&
Emergency Auxiliary
Electric system:
Battery:
Fuel tank capacity:
Driver's cab:

Tire size: Front
Rear (dual)

Single dry plate, hydraulic control with air booster
-5 forward \& 1 reverse speed, synchromesh and constantmesh gear
Reverse "ELLIOT" type
Full floating type
Ball nut type with power booster Semi-elliptic leaf springs with shock absorber
Equalizer beams and torque rods
2 circuit air brake, 6 wheels internal expanding type Spring loaded brake, acting on 4 rear wheels, variable air operated Exhaust brake

24 V

$12 \mathrm{~V}-115 \mathrm{~F} 51 \times 2$
200 lit
All steel welded construction,
2 persons, low line type, offset left hand side
10.00-20-14PR
10.00-20-14PR

NISSAN DIESEL KW31MXL

Maximum traveling speed:	$71 \mathrm{~km} / \mathrm{h}$
Gradeability (tan$\theta):$	36% (computed, @G.V.W. $=$
Minimum turning radius	$21,900 \mathrm{~kg}$)

Minimum turning radius
(center of extreme outer tire): 9.2 m
General dimensions

Overall length:	approx. $12,430 \mathrm{~mm}$
Overall width:	approx. $2,500 \mathrm{~mm}$
Overall height:	approx. $3,300 \mathrm{~mm}$
Wheel base:	4,700 mm
Treads: Front	$2,025 \mathrm{~mm}$
Rear	$1,860 \mathrm{~mm}$
Center to center of extended outriggers:	5,600mm (Fully extended)
	$3,800 \mathrm{~mm}$ (Intermediately extended)
Gross vehicle weight:	approx. 21,900kg
Front	approx. 5,850kg
Rear	approx. $16,050 \mathrm{~kg}$
Carrier	
Maker:	NISSAN DIESEL
Model:	KW31MXL
Drive system:	6×4
Engine	*
Maker:	NISSAN DIESEL
Model:	PE6
Type:	4 cycle, water cooled, diesel
No. of cylinder:	6 -inline
Piston displacement:	11,670cc
Max. output horsepower:	230 PS/2,200 r.p.m.
	169 KW/2,200 r.p.m.
Max. output torque:	$83 \mathrm{~kg} \cdot \mathrm{~m} / 1,300 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
	$813 \mathrm{~N} \cdot \mathrm{~m} / 1,300$ r.p.m.

$\begin{array}{ll}\text { Clutch: } & \\ \text { Transmission: } \\ \text { Axles: } & \text { Front } \\ \text { Steering: } & \text { Rear } \\ \text { Suspension: } & \text { Front } \\ & \text { Rear } \\ \text { Brake: } & \text { Service } \\ & \text { Parking } \\ & \text { Auxiliary }\end{array}$
Electric system:
Battery:
Fuel tank capacity:
Driver's cab:
Tire size:
Front
Rear (dual)

Single dry plate
6 forward \& 1 reverse speed,
Reverse "ELLIOT" type
Full floating type
Ball nut type with power booster
Semi-elliptic leaf springs with
shock absorber
Equalizer beams and torque rods
2 circuit air brake, 6 wheels
internal expanding type
Mechanical, acting on propeller shaft
Exhaust brake
24 V
12V-115F51 $\times 2$
200 lit
Steel, two men, semi under floor
type one side cab
10.00-20-16PR
10.00-20-16PR

FULLY HYDRAULIG TRUGK CRANE

*NOTE: KATO products and specifications are subject to improvements and changes without notice. If any options are included, specifications shown herein may change.

QUALITY \& EXPERIENCE SINCE 1895

KATO WORKS CO.,LTD.

9-37, Higashi-ohi 1-chome, Shinagawa-ku, Tokyo 140, Japan
Tel. : Head Office Tokyo (03) 3458-1111 Overseas Marketing Department Tokyo (03)3458-1115
Telex : 222-4519 (CRKATO J)
Fax. : Tokyo (03) 3458-1151
Cable: CRANEKATO TOKYO

